Albert Einstein | contribuições científicas

Contribuições científicas

Ao longo de sua vida, Einstein publicou centenas de livros e artigos. Além do trabalho individual, também colaborou com outros cientistas em outros projetos, incluindo a estatística de Bose-Einstein, o refrigerador de Einstein e outros.[132] Publicou mais de 300 trabalhos científicos, juntamente com mais de 150 obras não científicas.[133][nota 3]

Artigos do Ano Miraculoso

Os textos do Ano Miraculoso são trabalhos acadêmicos que estabeleceram Einstein como um dos físicos mais importantes do mundo. Não só publicou artigos importantes nesse ano, mas também encontrou tempo para escrever outros 23 de revisão para uma série de revistas. Realizou tudo isso em seu tempo livre depois que chegava em casa do trabalho. No início de 1905 tinha 25 anos, era um homem de família, com dois anos de casamento, e encontrou tempo para pensar sobre física. Independentemente de como conseguiu concentrar-se com sua vida agitada, os resultados alcançados nesse ano foram notáveis. Estão entre os trabalhos mais profundos já publicados na física. Um deles iria finalmente lhe render o seu grau de doutor e ajudar a estabelecer que os átomos realmente existem. Outros dois lançaram uma nova área da física — a relatividade especial — pela qual ele se tornou mundialmente famoso. Um quarto artigo ligado a curiosa observação sobre o movimento errático do pólen — o movimento browniano — com o tamanho de átomos. Todos eles foram publicados na prestigiada revista alemã Annalen der Physik.[134] Os quatro artigos são:

  • Sobre um ponto de vista heurístico relativo à produção e transformação da luz. Artigo científico que possui como foco o efeito fotoelétrico, foi recebido pelo periódico em 18 de março e publicado em 9 de junho. Resolveu um quebra-cabeça sem solução, sugerindo que a energia é trocada apenas em quantidades discretas (quanta).[135] Esta ideia foi fundamental para o desenvolvimento inicial da teoria quântica.[136]
  • Sobre o movimento de pequenas partículas em suspensão dentro de líquidos em repouso, tal como exigido pela teoria cinético-molecular do calor. Artigo focado no movimento browniano, foi recebido em 11 de maio e publicado em 18 de julho. Explicou evidência empírica para a teoria atômica, apoiando a aplicação da física estatística.[137]
  • Sobre a Eletrodinâmica dos Corpos em Movimento. Com foco na relatividade restrita, foi apresentado em 30 de junho e publicado em 26 de setembro. Reconciliou as equações de eletricidade e de magnetismo de Maxwell com as leis da mecânica, introduzindo alterações importantes na mecânica perto da velocidade da luz, que resultam da análise com base na evidência empírica de que a velocidade da luz é independente do movimento do observador.[138] Desacreditou o conceito de um "éter luminoso".[139]
  • A inércia de um corpo depende do seu conteúdo energético?. Artigo que investiga a equivalência massa-energia, foi apresentado ao periódico em 27 de setembro e publicado em 21 de novembro. É apresentada a equivalência de matéria e energia, E=mc² (e, por consequência, a capacidade da gravidade em "curvar" a luz), a existência da "energia de repouso" e a base da energia nuclear (a conversão de matéria em energia por seres humanos e no cosmos).[140]

Outros cientistas, especialmente Henri Poincaré e Hendrik Lorentz, tinham teorizado partes da relatividade especial. No entanto, Einstein foi o primeiro a reunir toda a teoria em conjunto e perceber o que era uma lei universal da natureza, não uma invenção de movimento no éter, como Poincaré e Lorentz tinham pensado. Originalmente, a comunidade científica ignorou os artigos do Ano Miraculoso. Isso começou a mudar depois que recebeu a atenção de Max Planck, o fundador da teoria quântica, um dos físicos mais influentes de sua geração e o único físico que notou os trabalhos. Ambos viriam a se conhecer em uma palestra internacional na Conferencia de Solvay, após Planck gradualmente confirmar sua teoria.[carece de fontes?]

Relatividade, E=mc² e o princípio da equivalência

Articulou o princípio da relatividade.[141] Isto foi entendido por Hermann Minkowski como uma generalização da invariância rotacional, do espaço para o espaço-tempo. Outros princípios postulados por Einstein e mais tarde provados são o princípio da equivalência e o princípio da invariância adiabática do número quântico.

Fotografia de Arthur Stanley Eddington do eclipse solar de 1919.

A relatividade geral é uma teoria da gravitação que foi desenvolvida por Einstein entre 1907 e 1915.[142] De acordo com a relatividade geral, a atração gravitacional observada entre massas resulta da curvatura do espaço e do tempo por essas massas. A relatividade geral tornou-se uma ferramenta essencial na astrofísica moderna. Ela fornece a base para o entendimento atual de buracos negros, regiões do espaço onde a atração gravitacional é tão forte que nem mesmo a luz pode escapar.

Como disse mais tarde, a razão para o desenvolvimento da relatividade geral foi a de que a preferência de movimentos inerciais dentro da relatividade especial não foi satisfatória, enquanto uma teoria que, desde o início, não prefere nenhum estado de movimento (mesmo os mais acelerados) deve parecer mais satisfatória.[143] Consequentemente, em 1907, publicou um artigo sobre a aceleração no âmbito da relatividade especial. Nesse artigo intitulado "Sobre o Princípio da Relatividade e as Conclusões Tiradas Dela", argumentou que a queda livre é um movimento inercial, e que para um observador em queda livre as regras da relatividade especial devem se aplicar. Este argumento é chamado de princípio da equivalência. No mesmo artigo, Einstein previu também o fenômeno da dilatação temporal gravitacional, desvio gravitacional para o vermelho e deflexão da luz.[144][145] Em 1911, publicou "Sobre a Influência da Gravidade na Propagação da Luz", em expansão do artigo de 1907, em que estimou a quantidade de deflexão da luz por corpos maciços. Assim, a previsão teórica de relatividade geral pode, pela primeira vez ser testada experimentalmente.[146]

Seu artigo "Sobre a Eletrodinâmica dos Corpos em Movimento" ("Zur Elektrodynamik bewegter Körper") foi recebido em 30 de junho de 1905 e publicado em 26 de setembro daquele ano.[carece de fontes?] Concilia as equações de Maxwell para a eletricidade e o magnetismo com as leis da mecânica, através da introdução de grandes mudanças para a mecânica perto da velocidade da luz. Isto mais tarde se tornou conhecido como a teoria da relatividade especial de Einstein. As consequências disto incluem o intervalo de espaço-tempo de um corpo em movimento, que parece reduzir de velocidade e se contrair (na direção do movimento), quando medido no plano do observador. Este documento também argumentou que a ideia de um éter luminífero — uma das entidades teóricas líderes da física na época — era supérflua.[carece de fontes?] Em seu artigo sobre equivalência massa-energia, Einstein concebeu E=mc² de sua equação da relatividade especial.[147] Seu trabalho de 1905 sobre a relatividade permaneceu controverso por muitos anos, mas foi aceito pelos principais físicos, começando com Max Planck.[nota 4][148]

Ilustração da curvatura do Espaço-tempo.

A teoria da relatividade geral tem uma lei fundamental — as equações de Einstein que descrevem como o espaço se curva, a equação geodésica que descreve como as partículas que se movem podem ser derivadas a partir das equações de Einstein. Uma vez que as equações da relatividade geral são não-lineares, um pedaço de energia feita de campos gravitacionais puros, como um buraco negro, se moveria em uma trajetória que é determinada pelas equações de Einstein, e não por uma nova lei. Assim, Einstein propôs que o caminho de uma solução singular, como um buraco negro, seria determinado como uma geodésica da própria relatividade geral. Isto foi estabelecido por Einstein, Infeld e Hoffmann para objetos pontuais sem movimento angular, e por Roy Kerr para objetos em rotação.

Poucos meses após publicar seu artigo sobre a relatividade geral em 1916, perceberam que distorções no espaço poderiam levar objetos a atalhos que poderiam conectar áreas muito remotas. Foram encontradas soluções que permitiam a possibilidade de um buraco de minhoca — um atalho entre duas partes remotas do espaço e, possivelmente, do tempo. Um buraco de minhoca é criado quando uma grande massa cria uma singularidade no tecido do espaço-tempo, algo tornado possível pela relatividade geral. Quando a singularidade de uma massa encontra a de outra, ambas podem se unir e criar uma passagem através da qual algo — matéria, luz, radiação — pode passar relativamente rápido apesar da grande distância entre elas. No mesmo ano em que Einstein publicou a teoria, dois físicos, Ludwig Flamm e Karl Schwarzschild, descobriram independentemente que os túneis no espaço eram soluções válidas para as equações da relatividade, que eram ferramentas para descrever a forma do espaço. As equações mostram que a gravidade distorceu a própria natureza do espaço, e em áreas de imensa gravidade, uma distorção, ou túnel, poderia aparecer. Schwarzschild já havia postulado a existência do que acabaria se tornando conhecido como buracos negros — estrelas mortas tão densas e com uma gravidade tão forte que qualquer coisa que chegasse muito perto seria sugada para sempre. A intensa gravidade associada com esses buracos negros poderia muito bem levar a enormes distorções espaciais. Em 1935, Einstein e Nathan Rosen desenvolveram um modelo mais completo destes túneis, que hoje são referidos como pontes de Einstein-Rosen.[149][150]

Mecânica quântica e relacionados

Einstein durante sua visita aos Estados Unidos em 1921.

Ao longo da década de 1910, a mecânica quântica expandiu em escopo para cobrir muitos sistemas diferentes. Depois de Ernest Rutherford descobrir o núcleo e propor que os elétrons orbitam como planetas, Niels Bohr foi capaz de mostrar que os mesmos postulados da mecânica quântica introduzidos por Planck e desenvolvidos por Einstein explicaria o movimento discreto dos elétrons nos átomos e a tabela periódica de elementos.

Einstein contribuiu para estes desenvolvimentos, ligando-os com os argumentos que Wilhelm Wien tinha apresentado em 1898. Wien tinha mostrado que a hipótese de invariância adiabática de um estado de equilíbrio térmico permite que todas as curvas de um corpo negro a temperaturas diferentes sejam derivadas uma a partir da outra por um processo simples de deslocamento.[151] Einstein observou em 1911 que o mesmo princípio adiabático mostra que a quantidade que é quantizada em qualquer movimento mecânico deve ser um invariante adiabático. Arnold Sommerfeld identificou esta invariante adiabática como a variável de ação da mecânica clássica.[152]

Embora o escritório de patentes o tenha promovido para técnico examinador de segunda classe em 1906, Einstein não tinha desistido da carreira acadêmica. Em 1908 tornou-se privatdozent na Universidade de Berna.[153] Em "Sobre o desenvolvimento de nossa visão sobre a natureza e constituição da radiação" ("Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung"), sobre a quantização da luz, e antes em um artigo de 1909, Einstein mostrou que os quanta de energia de Max Planck devem ter momentos bem definidos e agir, em alguns aspectos, como partículas pontuais independentes. Este artigo introduziu o conceito de fóton (embora o nome fóton tenha sido introduzido mais tarde por Gilbert Newton Lewis em 1926) e inspirou a noção de dualidade onda-partícula na mecânica quântica.

Manchete de jornal em 4 de maio de 1935.

Quando os físicos desenvolveram a mecânica quântica, sentiu-se uma grande emoção pois estavam concebendo as ferramentas necessárias para descrever o mundo recém-descoberto das partículas subatômicas. Einstein compartilhava a emoção. Mas o campo da mecânica quântica tomou um rumo que o frustrou: as equações desenvolvidas pelos cientistas só foram capazes de prever as probabilidades de como um átomo agiria. A mecânica quântica insiste que as leis mais fundamentais da natureza são aleatórias. Mesmo que os primeiros trabalhos de Einstein levaram diretamente para o desenvolvimento da nova ciência, o próprio sempre se recusou a aceitar essa aleatoriedade.[154] Em 1917, no auge de seu trabalho sobre a relatividade, publicou um artigo no Physikalische Zeitschrift que propôs a possibilidade da emissão estimulada, o processo físico que torna possíveis o maser e o laser.[carece de fontes?] Este artigo mostra que as estatísticas de absorção e emissão de luz só seriam consistentes com a lei de distribuição de Planck se a emissão de luz em uma moda estatística com ‘’’n’’’ fótons fosse aumentada estatisticamente em comparação com a emissão de luz em uma moda vazia. Este artigo foi enormemente influente no desenvolvimento posterior da mecânica quântica, porque foi o primeiro trabalho a mostrar que as estatísticas de transições atômicas tinham leis simples. Einstein descobriu os trabalhos de Louis de Broglie e apoiou as suas ideias, que foram recebidas com ceticismo no início. Em outro grande artigo nessa mesma época, Einstein proveu uma equação de onda para as ondas de Broglie, que sugeriu como a equação de Hamilton-Jacobi da mecânica. Este trabalho iria inspirar o trabalho de Schrödinger de 1926.

A intuição física de Einstein o levou a notar que as energias do oscilador de Planck tinham um ponto zero incorreto.[155] Ele modificou a hipótese de Planck, definindo que o estado de menor energia de um oscilador é igual a 12 hf, a metade do espaçamento de energia entre os níveis.[156] Este argumento, que foi feito em 1913 em colaboração com Otto Stern,[156] foi baseado na termodinâmica de uma molécula diatômica que pode se separar em dois átomos livres.[156]

Teoria do campo unificado e cosmologia

Einstein em seu escritório na Universidade de Berlim.

Depois de sua pesquisa sobre a relatividade geral, Einstein entrou em uma série de tentativas de generalizar sua teoria geométrica da gravitação para incluir eletromagnetismo como outro aspecto de uma única entidade. Em 1950, ele descreveu sua "teoria do campo unificado" em um artigo da Scientific American, intitulado "Sobre a Teoria da Gravitação Generalizada".[carece de fontes?] Embora continuasse a ser elogiado por seu trabalho, tornou-se cada vez mais isolado em sua pesquisa, e seus esforços foram infrutíferos. Em sua busca por uma unificação das forças fundamentais, Einstein ignorou alguns desenvolvimentos da física corrente, principalmente as forças nucleares forte e fraca, que não foram muito compreendidas até muitos anos após sua morte. A física corrente, por sua vez, em grande parte ignorou suas abordagens à unificação. O sonho de Einstein de unificar as outras leis da física com a gravidade motivam missões modernas para uma teoria de tudo e em particular a teoria das cordas, onde os campos geométricos surgem em um ambiente da mecânica quântica unificada.

Em 1917, aplicou a teoria da relatividade geral para modelar a estrutura do universo como um todo.[133] Ele queria que o universo fosse eterno e imutável, mas este tipo de universo não é consistente com a relatividade. Para corrigir isso, modificou a teoria geral através da introdução de uma nova noção, a constante cosmológica. Com uma constante cosmológica positiva, o universo poderia ser uma esfera eterna estática.[carece de fontes?]

Einstein acreditava que um universo esférico estático é filosoficamente preferido, porque obedeceria ao princípio de Mach. Ele havia mostrado que a relatividade geral incorpora o princípio de Mach, até um certo ponto, no arraste de planos por campos gravitomagnéticos, mas ele sabia que a ideia de Mach não funcionaria se o espaço continuasse para sempre. Em um universo fechado, ele acreditava que o princípio de Mach se manteria. O princípio de Mach tem gerado muita controvérsia ao longo dos anos.

Fótons, átomo e quantum de energia

Ver artigo principal: Fótons
O efeito fotoelétrico. Fótons chegando à esquerda se chocam com uma placa de metal e ejetam elétrons, mostrados como partindo à direita.

Em seu artigo "Sobre um ponto de vista heurístico relativo à produção e transformação da luz" ("Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt"), Einstein postulou que a luz em si consiste de partículas localizadas (quanta). Os quanta de luz de Einstein foram quase universalmente rejeitados por todos os físicos, incluindo Max Planck e Niels Bohr. Essa ideia só se tornou universalmente aceita em 1919, com os experimentos detalhados de Robert Millikan sobre o efeito fotoelétrico, e com a medida de espalhamento Compton. Einstein concluiu que cada onda de frequência f é associada com um conjunto de fótons com uma energia hf cada, em que h é a constante de Planck. Ele não diz muito mais, porque não tinha certeza de como as partículas estão relacionadas com a onda. Mas ele sugere que essa ideia poderia explicar alguns resultados experimentais, especialmente o efeito fotoelétrico.[carece de fontes?]

Em 1907, propôs um modelo de matéria em que cada átomo de uma estrutura de rede é um oscilador harmônico independente. No modelo de Einstein, cada átomo oscila de forma independente — uma série de estados quantizados igualmente espaçados para cada oscilador. Einstein estava consciente de que obter a frequência das oscilações reais seria diferente, mas ele propôs esta teoria porque era uma demonstração particularmente clara de que a mecânica quântica poderia resolver o problema do calor específico na mecânica clássica. Peter Debye aprimorou este modelo.[157]

Teoria da opalescência crítica

Ver artigo principal: Opalescência crítica

Einstein voltou para o problema das flutuações termodinâmicas, dando um tratamento das variações de densidade de um fluido no seu ponto crítico. Normalmente as flutuações de densidade são controladas pela segunda derivada da energia livre em relação à densidade. No ponto crítico, esta derivada é zero, levando a grandes flutuações. O efeito da flutuação da densidade é que a luz de todos os comprimentos de onda é dispersada, fazendo com que o fluido pareça branco leitoso. Einstein relaciona isso com a dispersão de Rayleigh, que é o que acontece quando o tamanho da flutuação é muito menor do que o comprimento de onda, e que explica por que o céu é azul.[158] Einstein quantitativamente derivou a opalescência crítica de um tratamento de flutuações de densidade, e demonstrou como tanto o efeito quanto a dispersão de Rayleigh se originam a partir da constituição atomística da matéria.

Argumento do buraco e teoria Entwurf

Ao desenvolver a relatividade geral, Einstein ficou confuso sobre a invariância de gauge na teoria. Formulou um argumento que o levou a concluir que uma teoria geral do campo relativístico é impossível. Desistiu de procurar equações tensoriais covariantes completamente gerais e procurou por equações que seriam invariantes apenas sob transformações lineares gerais. Em junho de 1913, a teoria Entwurf (do alemão "rascunho") foi o resultado dessas investigações. Como o próprio nome sugere, era um esboço de teoria, com as equações de movimento complementadas por condições adicionais de fixação de calibre. Ao mesmo tempo menos elegante e mais difícil do que a relatividade geral, após mais de dois anos de intenso trabalho, Einstein abandonou a teoria em novembro de 1915, depois de perceber que o argumento do buraco estava errado.[159]

Flutuações termodinâmicas e física estatística

O primeiro trabalho de Einstein, publicado em 1900 no Annalen der Physik, versou sobre a atração capilar.[160] Foi publicado em 1901 com o título "Folgerungen aus den Kapillarität Erscheinungen", que se traduz como "Conclusões sobre os fenômenos de capilaridade". Dois artigos que publicou entre 1902 e 1903 (termodinâmica) tentaram interpretar fenômenos atômicos a partir de um ponto de vista estatístico. Estas publicações foram a base para o artigo de 1905 sobre o movimento browniano, que mostrou que pode ser interpretado como evidência sólida da existência das moléculas. Sua pesquisa em 1903 e 1904 estava centrada principalmente sobre o efeito do tamanho atômico finito em fenômenos de difusão.[161]

Pseudotensor de momento de energia

A relatividade geral inclui um espaço-tempo dinâmico, por isso é difícil identificar a energia e momento conservados.[carece de fontes?] O teorema de Noether permite que essas quantidades sejam determinadas a partir da função de Lagrange com invariância de translação, mas a covariância geral transforma a invariância de translação em uma espécie de simetria de calibre.[162] A energia e o momento derivados pela relatividade geral pelas prescrições de Noether não fazem um tensor real por este motivo.

Einstein argumentou que isso é verdade por motivos fundamentais, pois o campo gravitacional poderia ser levado ao desaparecimento por uma escolha de coordenadas. Ele sustentou que o pseudotensor não-covariante de momento de energia era de fato a melhor descrição da distribuição de momento de energia em um campo gravitacional. Esta abordagem tem sido ecoada por Lev Landau e Evgeny Lifshitz,[162] dentre outros, e tornou-se padrão. O uso de objetos não-covariantes como pseudotensores foi duramente criticado em 1917 por Erwin Schrödinger e outros.

Colaboração com outros cientistas

Ver artigos principais: Efeito Einstein-de Haas e Paradoxo EPR
A Conferência de Solvay de 1927, em Bruxelas, uma reunião dos principais físicos do mundo. Einstein no centro.

Além de colaboradores de longa data como Leopold Infeld, Nathan Rosen, Peter Bergmann e outros, também teve algumas colaborações pontuais com vários cientistas, como Banesh Hoffmann.[163] Einstein e Wander de Haas demonstraram que a magnetização é devida ao movimento de elétrons, o que hoje em dia é conhecido como a rotação. Para mostrar isto, inverteram a magnetização em uma barra de ferro suspensa em um pêndulo de torção. Confirmaram que isso leva a barra a rodar, devido a mudanças no momento angular do elétron com as mudanças de magnetização. Esta experiência precisava ser sensível, porque o momento angular associado com os elétrons é pequeno, mas estabeleceu definitivamente que o movimento de elétrons é responsável pela magnetização.

Sugeriu a Erwin Schrödinger que seria capaz de reproduzir as estatísticas de um gás de Bose-Einstein ao considerar uma caixa. Então, para cada possível movimento quântico de uma partícula em uma caixa, associar um oscilador harmônico independente. Quantizando estes osciladores, cada nível terá um número inteiro de ocupação, que será o número de partículas na mesma. Essa formulação é uma forma de segunda quantização, mas é anterior à moderna mecânica quântica. Schrödinger a aplicou para derivar as propriedades termodinâmicas de um gás ideal semiclássico. Schrödinger pediu que adicionasse seu nome como coautor, mas Einstein recusou o convite.[164]

Einstein e Niels Bohr, em 1925

Os debates entre Bohr e Einstein foram uma série de disputas públicas sobre a mecânica quântica entre Einstein e Niels Bohr, que foram dois dos seus fundadores. Seus debates são lembrados por causa de sua importância para a filosofia da ciência.[carece de fontes?]

Em 1924 recebeu uma carta com a descrição de um modelo estatístico do físico indiano Satyendra Nath Bose, que criou um método de contagem onde se assume que a luz pode ser entendida como um gás de partículas indistinguíveis, usando uma nova forma para chegar à Lei de Planck.[165] As novas estatísticas de Bose ofereceram mais informações sobre como entender o comportamento dos fótons.[166] Ele mostrou que se um fóton entrou em um estado quântico específico, então há uma tendência para que o próximo entre no mesmo estado. Einstein notou que as estatísticas de Bose aplicavam-se a alguns átomos, bem como partículas de luz propostas, e submeteu a tradução do artigo em alemão para o Zeitschrift für Physik.[167] Também publicou seus próprios artigos descrevendo o modelo e suas implicações. Entre os resultados, em 1925 fez a notável descoberta em que algumas partículas aparecem em temperaturas muito baixas; se um gás tivesse uma temperatura bem próxima do zero absoluto — o ponto em que os átomos não se movem — todos eles caíam no mesmo estado quântico.[168] O condensado de Bose-Einstein é um tipo de matéria que é distintamente diferente das outras na Terra — diferente de líquido, sólido ou gasoso.[169] Foi a última grande contribuição de Einstein à física. Somente em 1995 o primeiro condensado foi produzido experimentalmente por Eric Allin Cornell e Carl Wieman usando equipamentos de ultrarresfriamento construídos no laboratório do Instituto Nacional de Padrões e TecnologiaInstituto Conjunto do Laboratório de Astrofísica da Universidade do Colorado em Boulder.[170] Hoje, as estatísticas de Bose-Einstein são usadas para descrever o comportamento de qualquer conjunto de bósons.[171]

Entre os anos de 1926 e 1930, Einstein e Szilárd trabalharam juntos e desenvolveram um silencioso refrigerador doméstico.[172] Em 11 de novembro de 1930, a Patente 1.781.541 dos Estados Unidos foi atribuída a ambos pelo refrigerador de Einstein.[173] Sua invenção não foi imediatamente colocada em produção comercial, uma vez que a mais promissora de suas patentes foi rapidamente comprada pela empresa sueca Electrolux para proteger sua tecnologia de refrigeração da competição.[nota 5]

Em 1935, Einstein, Boris Podolsky e Nathan Rosen produziram um famoso argumento para mostrar que a interpretação da mecânica quântica defendida por Bohr e sua escola em Copenhague era incompleta se certas suposições razoáveis fossem feitas a respeito de "realidade" e "localidade" contra o qual não havia um pouco de evidência empírica naqueles dias. Bohr escreveu um desmentido e foi declarado o vencedor. O debate persistiu em um nível filosófico até 1964, quando John Stewart Bell produziu sua famosa desigualdade baseada no realismo local (ou seja, a localidade mais realidade, tal como definido por Einstein, Podolsky e Rosen) na qual a mecânica quântica viola. Por fim, a questão foi trazida a baixo de sua altura filosófica ao nível empírico. Mas teve que esperar até 1982 para um verdadeiro veredito experimental. Os experimentos engenhosos realizados pela Aspect e seus colegas com fótons correlacionados mais uma vez pareciam vindicar a mecânica quântica. Após o aparecimento do argumento EPR e a resposta de Bohr, a escola de Copenhague teve que mudar sua postura. Tiveram que abandonar a ideia de que toda medida causava uma "perturbação" inevitável do sistema de medida. De fato, Bohr admitiu que, em uma causa como a correlatada no paradoxo EPR, "não havia dúvida de uma perturbação mecânica do sistema sob investigação".[175]

A teoria da gravidade de Einstein-Cartan é uma modificação da teoria da relatividade geral, permitindo que o espaço-tempo tenha torção, além de curvatura, e torção relativa à densidade da quantidade de momento angular intrínseco. Esta modificação foi proposta em 1922 por Élie Cartan, antes da descoberta do spin. Cartan foi influenciado pelo trabalho dos irmãos Cosserat (1909), que consideravam, além de um (assimétrico) tensor força de estresse, também um tensor momento de estresse em um meio contínuo adequadamente generalizado.[176]