Subconjunto
English: Subset

Text document with red question mark.svg
Este artigo ou secção contém fontes no fim do texto, mas que não são citadas no corpo do artigo, o que compromete a confiabilidade das informações (desde março de 2019). Ajude a este artigo inserindo fontes.
Diagrama de Euler ilustrando o fato de que é subconjunto de ou, equivalentemente, que é superconjunto de

Em teoria dos conjuntos, quando todo elemento de um conjunto é também elemento de um conjunto dizemos que é um subconjunto ou uma parte de e denotamos (lê-se: está contido em ou é subconjunto de ou é uma parte de ) ou ainda (lê-se: contém ou é superconjunto de ou tem como parte)[1]. Esta relação é conhecida por inclusão de conjuntos. Em linguagem simbólica,

Propriedades

  • A inclusão de conjuntos é uma relação reflexiva, ou seja, qualquer que seja o conjunto
    Realmente, a condicional é uma tautologia. Assim, tanto se como também se E, por definição,
  • A inclusão de conjuntos é uma relação transitiva, ou seja, se e então
    Se (e assumir que é irrelevante). Então, assuma que e seja Por hipótese, e, pela definição de inclusão, Assim, Também por hipótese isto é, se também Em particular, para temos Como era arbitrário, todo elemento de é também elemento de ou seja,
  • A inclusão de conjuntos é uma relação anti-simétrica, ou seja, se e então
    De fato, isto é o que diz o axioma da extensão.
  • Pelas três propriedades acima, dado um conjunto não-vazio e uma coleção de subconjuntos de a relação de inclusão é uma relação de ordem parcial em
    A inclusão de conjuntos é a relação de ordem parcial canônica — no sentido de que todo conjunto parcialmente ordenado (X, ) é isomorfo a alguma coleção de conjuntos ordenada pela inclusão. Os números ordinais constituem um exemplo simples — se cada ordinal é identificado com o conjunto de todos os ordinais menores ou igual a então se e somente se