Relâmpago

Disambig grey.svg Nota: Para uma tempestade que produz relâmpagos e trovões, veja Trovoada.
Um raio, acompanhado de relâmpago (clarão intenso).
Os canais de plasma que emitem o relâmpago.
Cumulonimbo, o tipo de nuvem frequentemente associado às trovoadas.

O relâmpago (do latim: re- + lampare, infinitivo de lampare, "brilhar"), também referido como corisco, lôstrego ou relampo, é a emissão intensa de radiação electromagnética resultante de uma descarga electrostática na atmosfera (o raio) produzida por uma grande diferença de potencial elétrico entre porções de matéria (nuvem-nuvem ou solo-nuvem). A descarga provoca uma corrente eléctrica de grande intensidade que ioniza o ar ao longo do seu percurso, criando um plasma sobreaquecido que emite radiação electromagnética, parte da qual sob a forma de luz no espectro visível (o relâmpago propriamente dito).[1] O relâmpago é percebido pelo olho humano como um repentino clarão de intensa luminosidade, frequentemente com acentuada cintilação, que precede ou acompanha o trovão,[2] embora durante a noite o relâmpago possa ser visto sem ser acompanhado pelo trovão (fenómeno conhecido por "gelação") e durante o dia o trovão possa ser ouvido sem que o relâmpago seja percebido.

Origem

A origem do relâmpago e do trovão foi objecto de muita especulação e investigação ao longo dos séculos, originando múltiplas explicações de cariz religioso, mitológico e científico. Nas culturas de matriz europeia, a primeira explicação de cunho científico que se conhece foi escrita pelo filósofo grego Aristóteles, no século III a.C., atribuindo o ruído à colisão entre nuvens e o relâmpago ao incêndio de uma exalação ejectada pelas nuvens.[3] Subsequentemente, foram sendo produzidas diversas teorias com variantes à explicação aristotélica, que, com cambiantes vários, foram generalizadamente aceites até ao século XIX.

Após as experiências de Benjamin Franklin e de Louis Guillaume Lemonnier[4] terem demonstrado a natureza eléctrica das trovoadas, conjugado com o conhecimento entretanto adquirido sobre as leis dos gases, por meados do século XIX ganhou aceitação a teoria de que o raio produzia um vácuo cujo preenchimento súbito pelo ar circundante provocava a explosão que originava o trovão. Teorias alternativas atribuíam o relâmpago e o trovão a uma explosão de vapor por sobreaquecimento da humidade do ar provocado pela passagem da corrente eléctrica ou à detonação de compostos químicos voláteis criados pela passagem da electricidade através do ar[5] Os desenvolvimentos no conhecimento dos plasmas, dos mecanismos de ionização e do electromagnetismo permitiram demonstrar que o relâmpago resulta da emissão de radiação electromagnética, incluindo luz visível, quando o plasma gerado no canal de propagação do raio é atravessado pela intensa corrente eléctrica da descarga.[6]

O mecanismo atrás descrito é consequência de numa trovoada se gerarem descargas electrostáticas que restabelecem o equilíbrio de potencial eléctrico entre áreas das nuvens e do solo com cargas eléctricas opostas. O ar, que em geral funciona como isolador eléctrico, quando a tensão eléctrica gerada pelo campo electrostático excede a sua tensão de ruptura dieléctrica ioniza-se e torna-se condutor, permitindo o início da descarga, a qual, em resultado da enorme corrente gerada e da grande resistência eléctrica do ar, aquece rapidamente o pequeno canal condutor criado, transformando o ar nele contido num plasma que se expande a velocidade supersónica. É a luz emitida por este plasma que produz o relâmpago e cujo brilho torna visível o canal ionizado como o "raio".

A temperatura medida por análise espectral no interior do canal do raio, que em geral tem apenas 2 – 5 cm de diâmetro, varia de forma típica durante os cerca de 50 μs em que o ar se mantém completamente ionizado, subindo rapidamente de cerca de 20 000 K para cerca de 30 000 K, descendo então gradualmente até cerca de 10 000 K, desvanecendo-se de seguida. O valor médio da temperatura do plasma formado é de aproximadamente 20 400 K (cerca de 20 100 °C),[7] quase quatro vezes superior ao valor médio de 5 502 °C registados na superfície do Sol.[8] A emissão de luz ocorre ao longo de uma estrutura de uma configuração grosseiramente cilíndrica, tendo como eixo o canal ionizado, o qual em média tem 5 – 6,5 km de comprimento.[1]

Aos efeitos de natureza termodinâmica há que juntar os efeitos de origem electrodinâmica, nomeadamente da constrição axial (ou z-pinch), que resultam da acção electromagnética da enorme corrente eléctrica que percorre o plasma durante a formação do raio[9]

Estima-se que em média apenas cerca de 9% da energia dissipada na descarga é transformada em radiação electromagnética, sendo o restante dissipado como calor (90%) e como como ondas de pressão (1%), dando origem ao trovão.[1] Dada a presença de fortes componentes sob a forma de ondas de rádio e de radiação ionizante, a parte visível do espectro corresponde a uma percentagem diminuta do total da energia dissipada.