Química
English: Chemistry

Disambig grey.svg Nota: Para outros significados, veja Química (desambiguação).
A estrutura química do DNA

Química[1][nota 1] é a ciência que estuda a composição, estrutura, propriedades da matéria, as mudanças sofridas por ela durante as reações químicas e a sua relação com a energia.[2][3]. É considerada uma ciência exata e é chamada muitas vezes de ciência central porque é a ponte entre outras ciências naturais[4][nota 2] como Física, Matemática e Biologia. A Química possui papel fundamental no desenvolvimento tecnológico, pois a utilização dos conceitos e técnicas dessa ciência permite a obtenção de novas substâncias, além de preocupar-se com a prevenção de danos e exploração sustentável do meio ambiente.

As áreas da Química são agrupadas basicamente em cinco grandes divisões, a saber: Química Inorgânica (estuda a matéria inorgânica), Química Orgânica (estuda os compostos de carbono), Físico-Química (compreende os aspectos energéticos dos sistemas químicos em escalas macroscópicas, molecular e atômica), Química Analítica (analisa materiais e ajuda a compreender a sua composição, estrutura e quantidade) e Ensino de Química (estuda e investiga os processos de ensino e aprendizagem da Química).

No Brasil são considerados profissionais relacionados a ciências químicas, com registro nos Conselhos Federais e Regionais de Química: Engenheiros Químicos, Bacharéis e Licenciados em Química, Bacharéis em Química Industrial ou Química Tecnológica, Bacharéis em Bioquímica.

História

O desenvolvimento desta ciência teve como base as observações de experimentos, sendo portanto, considerada uma ciência experimental

O Alquimista, de Pietro Longhi.

Os filósofos gregos Empédocles e Aristóteles acreditavam que as substâncias eram formadas por quatro elementos: terra, vento, água e fogo. Paralelamente, discorria outra teoria, o atomismo, que postulava que a matéria era formada por átomos, partículas indivisíveis que se podiam considerar a unidade mínima da matéria. Esta teoria, proposta pelo filósofo grego Demócrito de Abdera, não foi popular na cultura ocidental, dado o peso das obras de Aristóteles na Europa. No entanto, tinha seguidores (entre eles Lucrécio) e a ideia ficou presente até o princípio da Idade Moderna.

Entre os séculos III a.C. e o século XVI d.C, a Química estava dominada pela alquimia. O objetivo de investigação mais conhecido da alquimia era a procura da pedra filosofal, um método hipotético capaz de transformar os metais em ouro, e o elixir da longa vida. Na investigação alquímica desenvolveram-se novos produtos químicos e métodos para a separação de elementos químicos. Deste modo foram-se assentando os pilares básicos para o desenvolvimento de uma futura química experimental. O cientista irlandês Robert Boyle é tido por muitos como o iniciador da Química moderna, já que, em meados do século XVII, ele executou experimentos planejados, estabelecendo através deles generalizações. Apesar dos méritos de Boyle, muitos consideram o francês Antoine Laurent Lavoisier, que viveu no século XVIII, o pai da Química, especialmente devido ao seu trabalho sobre o conceito de conservação da massa, sendo este considerado o marco do estabelecimento da química moderna, ocasionando a chamada Revolução Química. Os estudos de Lavoisier foram referência para que fosse proposto por John Dalton, no início do século XIX, o primeiro modelo atômico. A Química experimentou grande desenvolvimento teórico e metodológico durante o século XX, especialmente pelo estabelecimento da mecânica quântica, métodos espectroscópicos e metodologias de síntese orgânica, que impulsionaram o descobrimento de novos fármacos, determinação da estrutura química de moléculas, como o ácido desoxirribonucleico e sofisticação das teorias já existentes

A separação da Alquimia

A Química, como é conhecida atualmente, começou a desenvolver-se entre os séculos XVI e XVII. Nessa época estudou-se o comportamento e propriedades dos gases estabelecendo-se técnicas de medição. Aos poucos, foi-se desenvolvendo e refinando o conceito de elemento como uma substância elementar que não podia ser descomposto em outras. Também esta época desenvolveu-se a teoria do flogisto para explicar os processos de combustão.

Robert Boyle desenvolveu sua magnum opus "O Químico Cético", abandonando as teorias aristotélicas de alquimia e contemplando a pesquisa experimental e conclusões com base em experimentos. Georg Ernst Stahl e Johann Joachim Becher desenvolveram em 1700 a teoria do flogisto. Esta teoria, que se manteve por 80 anos até ser refutada, afirmava que as substâncias suscetíveis de sofrer combustão continham o flogisto, e que o processo de combustão consistia basicamente na perda desta substância. A causa da má interpretação da teoria do flogisto era a então substância ainda desconhecida presente no ar, o oxigênio. Joseph Priestley, estudando a composição do ar, percebeu a existência de uma substância no ar, a qual participava dos processos respiratórios e promovia reações de oxidação de metais aos seus óxidos. A teoria de elementos de Boyle considerava que um elemento químico era uma pluralidade de átomos idênticos, indivisíveis.

Por volta do século XVIII, a Química adquire definitivamente as características de uma ciência experimental. Desenvolvem-se métodos de medição cuidadosos que permitem um melhor conhecimento de alguns fenómenos, como o da combustão da matéria; Antoine Lavoisier foi o responsável por perceber a presença do carbono nos seres vivos e a complexidade de suas ligações em relação aos compostos inorgânicos e refutador da teoria do flogisto, e assentou finalmente os pilares fundamentais da Química moderna.

Desenvolvimento da tabela periódica

O período seguinte foi a busca de novos elementos químicos, a determinação de seus pesos atômicos exatos e sua caracterização por reações com outras substâncias, sendo essa uma das tarefas mais importantes da Química inorgânica. Lothar Meyer e Dmitri Mendeleev ordenaram os elementos químicos por massa atômica e com base na capacidade de fazer ligações químicas, originando a tabela periódica. Svante Arrhenius, Jacobus Henricus van't Hoff e Wilhelm Ostwald estimaram a constante de dissociação de sais, ácidos e bases em soluções aquosas. Alfred Werner questionou a validade das teorias e modelos aceitos na Química Orgânica, estruturando a nova química inorgânica em termos dos conceitos de coordenação e de estereoquímica.

Antes do século XIX, os químicos acreditavam que os compostos obtidos a partir de organismos vivos eram demasiadamente complexos para serem sintetizados. De acordo com o conceito de vitalismo, a matéria orgânica era dotada de uma "força vital". Esses compostos foram nomeados como "orgânicos", porém durante a primeira metade do século XIX os cientistas descobriram que os compostos orgânicos poderiam ser sintetizados em laboratório. Em 1828, Friedrich Wöhler produziu a ureia, um componente da urina, a partir do sal inorgânico cianato de amônio e, embora Wöhler sempre tenha sido cauteloso sobre a alegação de que teria refutado a teoria da força vital, esse evento tem sido muitas vezes visto como um marco para o estabelecimento da Química Orgânica. A descoberta do petróleo e a sua separação em frações de acordo com a diferença no ponto de ebulição de seus componentes foi outra etapa importante da história da ciência. Já a indústria farmacêutica teve seu início na última década do século XIX, com a fabricação de ácido acetilsalicílico (mais conhecido por como aspirina) pela Bayer na Alemanha.[6]

Com os trabalhos sobre termodinâmica química, eletrólitos em soluções, cinética química e outros assuntos entre as décadas de 1860 a 1880, originou-se a Físico-Química moderna. O marco foi a publicação em 1876 por Josiah Willard Gibbs de seu artigo, sobre o equilíbrio de substâncias heterogêneas. Este artigo apresentou vários dos pilares da Físico-Química, como a energia livre de Gibbs, os potenciais químicos e a regra das fases de Gibbs.[7] Outros marcos incluem a introdução dos termos entalpia por Heike Kamerlingh Onnes e processos macromoleculares.

O primeiro método de análise instrumental foi desenvolvido por Robert Bunsen e Gustav Kirchhoff e foi baseado na espectroscopia de absorção atômica de chama. Utilizando essa técnica, eles descobriram, em 1860, elementos como o rubídio (Rb) e o césio (Cs).[8] Durante este período a análise instrumental tornou-se progressivamente dominante. Em particular, muitas das técnicas espectroscópicas e de espectrometria básicas foram descobertas no início do século XX e aperfeiçoadas até o final do século XX.[9] Os processos de separação se desenvolveram na linha de tempo de modo similar e também tornaram-se cada vez mais instrumentais.[10]

Bioquímica e Química Quântica

A Bioquímica, anteriormente chamada de Química Biológica ou Fisiológica,[11] surgiu a partir das investigações de fisiologistas e químicos sobre compostos e conversões químicas em seres humanos e plantas no século XIX [12][13] O termo Bioquímica foi proposto pelo químico e médico alemão Carl Neuberg (1877-1956) em 1903, embora no século XIX grandes pesquisadores, como Wohler, Liebig, Pasteur e Claude Bernard, estudassem a Química da vida sobre outras denominações.[11][14]

Com a Segunda Guerra Mundial, o mundo ingressou na era atômica, marcada pelo descobrimento dos elementos transurânicos e pelos avanços na radioquímica. A disponibilização de isótopos permitiu a realização de experimentos importantes sobre o comportamento cinético e mecanístico dos compostos inorgânicos, o qual foi racionalizado por Henry Taube, em 1949, com base nas teorias de ligação. O entendimento lógico do caráter lábil/inerte dos compostos de coordenação lançou a semente dos mecanismos de transferência de elétrons, propostos por Taube em 1953, definitivamente consagrados com o Prêmio Nobel que lhe foi outorgado em 1983.

Desde a metade do século XX, com o desenvolvimento de novas técnicas como a cromatografia, a difracção de raios X, marcação por isótopos e o microscópio eletrônico, houve avanço na área da Bioquímica. Essas técnicas abriram o caminho para a análise detalhada e a descoberta de muitas moléculas e rotas metabólicas das células, como a glicólise, ciclo de Krebs (ciclo dos ácidos tricarboxílicos) e a fosforilação oxidativa (cadeia transportadora de elétrons).