Netuno (planeta)

Netuno/Neptuno Neptune symbol.svg
Planeta principal
Neptune Full.jpg
Fotografia feita pela sonda Voyager 2 ao passar pelo planeta em 1989.
Características orbitais
Semieixo maior4 503 443 661km
30,0 366 151 UA
Periélio4 452 940 833 km
29,76 607 095 UA
Afélio4 553 946 490 km
30,44 125 206 UA
Excentricidade0,011 214 269
Período orbital60 190,03 dias (164,79 anos)
Período sinódico367,5 dias[1]
Velocidade orbital média5,43 km/s
InclinaçãoEclíptica: 1,767 975°
Equador solar: 6,43°
Plano invariável: 0,72 °
Argumento do periastro265,646 853°
Longitude do nó ascendente131,794 310°
Número de Satélites14
Características físicas
Diâmetro equatorial49 528 km
Área da superfície7,6183×109 km²
Volume6,254×1013 km³
Massa1,0243×1026 kg
Densidade média1,638 g/cm³
Gravidade equatorial11,15 m/s²
1,14 g
Período de rotação0,6713 dia
16 h 6 min 36 s
Velocidade de escape23,5 km/s
Inclinação axial28,32°
Albedo0,290 (Bond)
0,41 (geom.)
Temperaturamédia: −201,15 ºC
−221,3 ºC min
Magnitude aparente8,02 a 7,78
Composição da atmosfera
Composição80 ± 3.2% hidrogênio
19 ± 3.2% hélio
1.5 ± 0.5% metano
~0.019% deuterídio de hidrogênio
~0.00015% etano
Gelos:
amoníaco
água
hidrossulfeto de amônio
hidrato de metano
Disambig grey.svg Nota: Para o deus da mitologia romana, consulte Netuno; para os demais casos, veja Netuno.

Netuno (português brasileiro) ou Neptuno (português europeu) (AO 1990: Netuno ou Neptuno)[2][3] é o oitavo planeta do Sistema Solar, o último a partir do Sol desde a reclassificação de Plutão para a categoria de planeta anão, em 2006. Pertencente ao grupo dos gigantes gasosos, possui um tamanho ligeiramente menor que o de Urano, mas maior massa, equivalente a 17 massas terrestres. Netuno orbita o Sol a uma distância média de 30,1 unidades astronômicas.

O planeta é formado por um pequeno núcleo rochoso ao redor do qual encontra-se uma camada formada possivelmente por água, amônia e metano sobre a qual situa-se sua turbulenta atmosfera, constituída predominantemente de hidrogênio e hélio. De fato, notáveis eventos climáticos ocorrem em Netuno, inclusive a formação de diversas camadas de nuvens, tempestades ciclônicas visíveis, como a já extinta Grande Mancha Escura, além dos ventos mais rápidos do Sistema Solar, que atingem mais de 2 000 km/h. A radiação solar recebida por Netuno não seria suficiente para fornecer tamanha energia à turbulenta atmosfera, pelo que descobriu-se que o calor irradiado do centro do planeta possui um papel importante na manutenção destes eventos meteorológicos extremos. A pequena quantidade de metano nas camadas altas da atmosfera é, em parte, responsável pela coloração azul do planeta.

Ao redor de Netuno orbitam quatorze satélites naturais conhecidos, dos quais destaca-se Tritão, de longe o maior. Um tênue e incomum sistema de anéis também existe, exibindo uma estrutura irregular com concentrações de material que formam arcos. Sua influência gravitacional afeta as órbitas de corpos menores situados além, no Cinturão de Kuiper, entrando em ressonância orbital.

Visto da Terra, Netuno apresenta uma alta magnitude (quanto mais brilhante o astro, menor sua magnitude), sendo impossível observá-lo a olho nu. Suspeitou-se de sua existência somente após a observação cuidadosa da órbita de Urano, que apresentava ligeiras irregularidades por conta da perturbação gravitacional de Netuno. Após análise matemática com conclusões obtidas independentemente por John Couch Adams e Urbain Le Verrier, obtiveram as posições aproximadas de onde o planeta deveria estar na esfera celeste. Após diversas buscas com o auxílio de telescópios, em 23 de setembro de 1846 encontraram o planeta, cujo nome escolhido posteriormente homenageia o deus romano dos mares. Até o presente momento, a única sonda espacial que visitou o planeta foi a Voyager 2, em 1989, cuja passagem permitiu obter fotografias e informações sem precedentes, ainda sendo a principal fonte de dados sobre o que atualmente se conhece sobre o planeta.

Características físicas

Comparação de tamanho entre Netuno e a Terra.

O planeta mais distante do Sol pertence ao grupo dos gigantes gasosos, sendo o quarto maior do Sistema Solar, mas sua massa é superior à de Urano. Seu raio é equivalente a 3,91 raios terrestres (cerca de 24 mil quilômetros), enquanto que sua massa corresponde a 17,14 massas terrestres. Embora esteja no grupo dos gigantes gasosos, Netuno, assim como Urano, são bem mais densos e menos massivos que Júpiter e Saturno. Contudo, seu tamanho ainda é bastante superior às dimensões dos planetas telúricos.[4]

Em virtude de sua rápida rotação (cerca de 16 horas e sete minutos), o planeta possui um ligeiro achatamento. Por isso, o raio equatorial (24 764 km) é maior do que o raio polar (24 340 km).[nota 1] A aceleração da gravidade no planeta é de 11,15 m/s2 (pouco maior que a da Terra) e a velocidade de escape é de 23,5 km/s.[nota 2][5]

Estrutura interna

Estrutura interna de Netuno.

Juntamente com Urano, Netuno pertence à classe dos gigantes gasosos, pois possui uma grande massa de compostos voláteis que são encontrados sob a forma de gelo nas regiões longínquas do Sistema Solar. Além disso, os modelos que descrevem a composição interna dos dois planetas são bastante semelhantes entre si. Enquanto que nos dois maiores gigantes gasosos, Júpiter e Saturno, hidrogênio e hélio compõem a maior parte da massa dos planetas, em Netuno estes elementos são abundantes somente na atmosfera, cuja espessura estimada é de cinco mil quilômetros.[6]

Embora possua dimensões ligeiramente menores, Netuno possui massa maior do que a de Urano, pelo fato de que a massa específica de Netuno é de 1,64 g/cm³ em comparação com 1,3 g/cm³ de Urano.[7] Infere-se, a partir da densidade do planeta (não tão leve para ser composto por gases leves nem tão pesado para ser composto de silicatos e metais) que seja formado predominantemente por água, metano e amônia. Embora essas substâncias sejam conhecidas como "gelos", não estão necessariamente em estado sólido no interior do planeta.[8] Possivelmente estes compostos estão mais comprimidos no interior do planeta, o que aumenta sua densidade, o que poderia ser causado também pelo maior teor de compostos rochosos nas suas camadas internas.[9]

A observação do planeta em infravermelho evidencia a emissão de energia térmica do planeta, muito superior à energia recebida do Sol.

Netuno provavelmente possui um núcleo de material rochoso de massa similar à da Terra, cuja temperatura deve ser superior a 5 100 °C, possivelmente maior do que o núcleo de Urano.[10] Ao seu redor, existiria um grande "oceano", uma camada formada principalmente por oxigênio, nitrogênio, carbono e hidrogênio, mantidos sob grande pressão e temperatura. Contudo o termo não implica que exista necessariamente uma camada líquida no planeta, mas na verdade uma região onde estes elementos podem ser encontrados em átomos isolados ou formando substâncias químicas, principalmente água, metano e amônia. Não se sabe, contudo, a proporção desses elementos na constituição do planeta. Uma quantidade superior de hidrogênio poderia implicar sua manifestação com características metálicas, o que permitiria o fluxo de corrente elétrica e influenciaria o campo magnético.[11] Reações químicas podem ocorrer também entre os elementos químicos e substâncias, que teriam como produtos, por exemplo, hidrogênio molecular, que subiria para a atmosfera e diamante, que afundaria em direção ao núcleo.[9]

O fluxo térmico de Netuno possui um fator de 2,6, ou seja, o planeta emite 2,6 vezes mais energia térmica do que recebe do Sol. Por isso, a atividade convectiva da atmosfera é influenciada pela energia proveniente do interior do planeta, sendo determinante para explicar a grande variabilidade dos eventos meteorológicos observados.[12] Nos planetas terrestres, a fonte de calor do núcleo provém do decaimento radioativo, enquanto que, em Júpiter, a energia térmica provém da condensação e movimento interno do gás hélio. Contudo, os elementos radioativos são pouco abundantes nos confins do Sistema Solar, bem como a quantidade de hélio na composição total do planeta é pouco significativa. Desta forma, não há até o presente momento explicação para a origem da energia interna adicional do planeta.[10] Um processo de diferenciação planetária nas camadas do manto de Netuno poderia contribuir para a liberação de energia térmica.[9]

Combinação de observações no comprimento de onda visível e infravermelho próximo permitem identificar as bandas onde o gás metano é mais abundante (em azul) e a presença de nuvens que refletem o infravermelho (em vermelho). Os quatro pontos ao redor do planeta são os satélites naturais Proteu (o mais brilhante), Larissa, Galatea e Despina.

Atmosfera

A atmosfera de Netuno é, sob diversos aspectos, similar à de Urano. Contudo sua dinâmica apresenta-se em uma complexa configuração de fortes ventos que varrem o planeta, além da formação de tempestades ciclônicas e de nuvens, com características visuais claramente visíveis.[13] Assim como os demais planetas gigantes, Netuno não possui uma superfície visível e definida, por isso as altitudes na atmosfera são medidas a partir do referencial cuja pressão é de 1 bar.[14] A partir deste nível de referência, a atmosfera estende-se até uma profundidade de cinco mil quilômetros, onde a pressão chega a cem mil bars.[11]

A atmosfera superior de Netuno é composta por 79% de hidrogênio, cerca de 18% de hélio e a maior parte restante por metano, cuja presença confere a coloração azul anil do planeta, ao absorver a radiação vermelha incidente. Presume-se que algum outro componente da atmosfera de Netuno contribua para sua acentuada coloração, uma vez que Urano possui uma quantidade de metano similar em sua atmosfera, mas apresenta coloração mais clara.[15] Esta camada observada representa somente uma pequena fração do planeta, correspondendo a cerca de 15% do raio do planeta.[7][16]

A temperatura da atmosfera netuniana varia conforme a altitude. Na altitude cuja pressão equivale a 0,1 bar, a temperatura chega ao mínimo de 50K (-223 °C), e sobe conforme a pressão diminui, ou seja, conforme a altitude aumenta, atingindo até 327 °C a uma pressão de centenas de bilionésimos de bar, o que equivale a uma altitude de 2200 quilômetros acima do nível de referência de 1 bar. Abaixo do nível de pressão de 0,1 bar, a temperatura aumenta conforme a pressão aumenta. No nível de referência de 1 bar, a temperatura média é de 74K (-199,15 °C).[17] A alta temperatura da camada superior da atmosfera, embora seja comum em todos os outros planetas gigantes, ainda permanece um mistério, pois não pode ser provocada pela radiação ultravioleta solar, devido à grande distância ao Sol. Possivelmente está relacionada ao comportamento do campo magnético do planeta.[18]

Netuno é coberto por uma névoa semitransparente capaz de espalhar a luz solar (em vermelho), nas camadas mais altas da atmosfera. (cores falsas)

Com base nas temperaturas, a atmosfera pode ser dividida em camadas. Desde a parte mais profunda da atmosfera até o nível onde ocorrem as menores temperaturas (onde a pressão é de 0,1 bar) encontra-se a troposfera, onde normalmente ocorrem névoas e nuvens. Limitada pela tropopausa, a camada imediatamente seguinte é a estratosfera, na qual a temperatura cresce com a altitude até a mesosfera. Acima desta, está a termosfera, onde a pressão é da ordem de 10−6 microbar e altas temperaturas ocorrem, seguida pela exosfera, extremamente rarefeita.[19][20]

O metano, embora não seja tão abundante, interfere na dinâmica da atmosfera netuniana. Ao serem atingidas pelos raios ultravioleta do Sol, as moléculas de metano se quebram por fotólise e formam hidrocarbonetos e polímeros, como etano e acetileno, que formam uma névoa. Esta névoa situa-se acima das camadas de nuvens de metano. Estas partículas caem para as profundezas da atmosfera, onde a temperatura e pressão são maiores, onde a abundância de hidrogênio propicia novamente a formação de metano que, por correntes convectivas, retorna às camadas superiores da atmosfera, estabelecendo assim um ciclo no qual a proporção de metano na atmosfera permanece constante.[21][22]

Entretanto, a quantidade de metano na estratosfera é anormalmente alta, ao contrário do que preveem os modelos teóricos. As moléculas de metano teoricamente seriam levadas para as altas camadas pelas fortes correntes convectivas. Descobriu-se, no entanto, que a região polar sul do planeta é 10 °C mais quente que a temperatura média do planeta. Desta forma, o metano encontraria condições favoráveis para escapar para camadas altas da atmosfera, espalhando-se pela estratosfera. Esta temperatura está relacionada ao verão do hemisfério sul. Espera-se que quando o verão chegar no hemisfério norte, o mesmo ocorra na região polar oposta.[23][24]

Estações de Netuno. Observa-se um aumento da quantidade de nuvens no hemisfério sul, destacadas em branco.

Dinâmica atmosférica

O planeta é varrido por fortes ventos que formam cinturões, de forma similar aos outros gigantes gasosos. Estas grandes faixas circulam paralelas ao equador do planeta, e seguem, em baixas latitudes, em direção retrógrada, oposta à rotação do planeta. Conforme o aumento da latitude a partir do equador, gradualmente revertem sua direção até se tornarem prógrados, no sentido de rotação do planeta, acima da latitude 70° norte e sul.[25][26] Provavelmente, as correntes convectivas são ascendentes em latitudes médias e descendentes próximas ao equador e nos polos, alimentadas pela energia interna irradiada do núcleo do planeta.[27]

Observações feitas ao longo de décadas tanto pela sonda Voyager, Telescópio Espacial Hubble e outros telescópios na Terra permitiram constatar mudanças de longo prazo que vêm ocorrendo na atmosfera do planeta. Em especial, notou-se um aumento da atividade atmosférica no hemisfério sul até o ano de 2003, quando a formação de nuvens atingiu seu máximo. A estratosfera do planeta também tem apresentado um gradual aumento da temperatura, por causas desconhecidas.[28]

Por conta da inclinação de seu eixo de rotação em pouco mais de 28°, Netuno possui estações que duram aproximadamente quarenta anos, apesar da intensidade da luz solar que atinge o planeta ser 900 vezes menor que a no nosso planeta. A formação de nuvens no hemisfério sul do planeta estaria associada à chegada do verão, quando é máxima a radiação solar incidente.[29] A intensidade das tempestades parece estar também ligada à gradual mudança de estação.[30]

O planeta vem mostrando ainda um ligeiro aumento de brilho ao longo das últimas duas décadas devido à maior formação de nuvens, o que também deve estar relacionado à mudança de estação e à maior insolação no hemisfério sul.[nota 3] O maior aquecimento, em especial em altas latitudes, provoca correntes convectivas que leva o metano para as camadas altas da atmosfera, onde formam-se cristais que constituem as nuvens. Existem ainda evidências de que o ciclo de atividade solar, que se repete a cada onze anos, poderia também influenciar na maior ou menor quantidade de nuvens periodicamente.[30]

Nuvens

Nuvens de metano fotografadas pela Voyager 2. Nota-se a sombra projetada pelas nuvens nas camadas de nuvens a cinquenta quilômetros abaixo.

A dinâmica atmosférica de Netuno é marcada por uma variedade de tipos de nuvens de rápida evolução que interferem na aparência e no fluxo térmico do planeta. O planeta apresenta bandas de circulação dos ventos tal como Júpiter ou Saturno, contudo são praticamente indistinguíveis visualmente. Em observações no comprimento de onda do infravermelho, entretanto, pode-se observar a existência de espessas faixas, estendendo-se por dezenas de graus de latitude e envolvendo todo planeta, além de apresentarem grande variação de largura ao longo de poucos anos.[31][32]

Contrastando com a coloração azul do planeta, surgem nuvens de cristais de metano de coloração branca, análogas aos cirros formados por cristais de água na Terra. Possuem geralmente um curto período de existência, formando-se e dissipando-se em questão de horas. Localizam-se acima do nível de pressão de 1 bar, acima dos demais níveis de nuvens, sobre os quais projeta sombra. Nuvens deste tipo são comumente associadas a tempestades ciclônicas, tal como ocorreu em conjunto com a Grande Mancha Escura, possivelmente no nível de pressão de 0,1 bar. Estas nuvens são facilmente identificáveis quando observadas em infravermelho, pois refletem grande parte da radiação incidente neste comprimento de onda.[33]

Modelos teóricos da atmosfera de Netuno preveem a localização de outras camadas de nuvens nas camadas internas da atmosfera do planeta, abaixo das camadas observadas pela Voyager 2. Devem ser formadas por sulfeto de hidrogênio e amônia entre 2 e 5 bar e cristais de água e hidrossulfeto de amônio entre 20 e 50 bar.[34][35] Somente duas camadas de nuvem foram observadas diretamente, sendo a superior formada por metano e a inferior uma camada espessa e opaca, tratando-se possivelmente do topo da camada de nuvens de sulfeto de hidrogênio.[36]

Tempestades

A Grande Mancha Escura, com nuvens de metano ao seu redor. Ao sul a Pequena Mancha Escura, outra tempestade ciclônica. Entre as duas, uma nuvem branca proeminente apelidada de Scooter. Fotografia reaçada feita pela Voyager 2.

A visita da sonda Voyager 2 revelou que, mesmo apesar de estar extremamente longe do Sol, Netuno possui uma dinâmica atmosférica turbulenta, com fortes ventos e formações ciclônicas que evoluem rapidamente.[37] Apresentam estruturas visualmente distintas, diferentemente de Urano. A velocidade média dos ventos que circulam o planeta em direção contrária ao movimento de rotação no equador é de cerca de 400 metros por segundo, e nos polos, em direção prógrada, cerca de 250 m/s, já muito superiores às velocidades dos ventos na Terra. Contudo, as maiores velocidades registradas no planeta atingem mais de 2 000 quilômetros por hora, sendo os mais rápidos registrados em todo o Sistema Solar.[22] Esta dinâmica é causada principalmente pela energia interna irradiada do centro do planeta, produzindo correntes convectivas.[38]

Uma das mais notáveis tormentas registradas foi a Grande Mancha Escura fotografada pela Voyager 2 ao passar pelo planeta. Comparável à Grande Mancha Vermelha de Júpiter, a mancha localizava-se a 30 graus ao sul do equador. Tratava-se de uma tormenta anticiclônica com 12 mil por 18 mil quilômetros de extensão, que diminuíram para 5 mil por 7600 quilômetros após os oitos dias de observação da Voyager 2.[22] Observações efetuadas poucos anos depois com o Telescópio Espacial Hubble mostraram que a Grande Mancha Escura havia desaparecido completamente, sem deixar nenhum vestígio.[39] As tempestades ciclônicas no planeta parecem formar "buracos" nas camadas superiores de nuvens, revelando as camadas inferiores.[40] Contudo, em 1994, o Hubble permitiu observar uma nova grande tempestade no outro hemisfério similar à observada pela Voyager 2, apelidada de Grande Mancha Escura do Norte, que durou por dois anos.[41]

As fotografias da Voyager mostraram, ainda, um conjunto de nuvens brancas próximas à região da Grande Mancha Escura, mas que circulavam o planeta mais rápido, por isso foram apelidadas de Scooter. Ao sul da grande mancha existia outra tormenta de dimensões menores, nomeada Pequena Mancha Escura.[42]

Magnetosfera

Netuno, conforme descoberto a partir de dados enviados pela Voyager 2, possui um campo magnético cujos dipolos principais estão inclinados 47° em relação ao seu eixo de rotação, além de seu centro estar deslocado do centro do planeta, com distância superior a meio raio do planeta. Por este motivo, os polos magnéticos encontram-se em baixas latitudes no planeta, além de ser mais intenso no hemisfério sul, em direção ao qual está deslocado.[43][44]

A intensidade do campo magnético ao nível atmosférico de 1 bar varia entre 1 e 0,1 gauss entre os hemisférios sul e norte, respectivamente.[nota 4] Sua origem possivelmente é a corrente de fluidos ionizados em seu interior, criando o efeito de dínamo similar ao da Terra e de Urano. A circulação de cargas elétricas nas camadas internas (localizadas possivelmente na metade do raio do planeta). A distribuição do campo magnético netuniano, entretanto, apresenta uma configuração complexa, na qual ocorre a superposição de um campo quadrupolo, o qual produz quatro polos magnéticos igualmente espaçados entre si, e octopolo cuja intensidade por vezes supera o dipolo, sendo o caso mais intenso deste fato em todo o Sistema Solar.[43][45][46]

A magnetosfera de Netuno, a região livre dos efeitos do vento solar criada pelo campo magnético do planeta, estende-se desde o arco de choque (região onde as partículas do vento solar são desaceleradas pelo campo magnético), situado a cerca de 39 raios do planeta a frente de si, até a magnetopausa, a 26 raios do planeta na direção oposta.[47] A configuração da magnetosfera de Netuno varia conforme a rotação do planeta e do campo magnético transcorrem, variando desde uma configuração normal semelhante ao campo magnético terrestre até aquela em que o polo magnético aponta diretamente na direção do vento solar, cujos ciclos se repetem a cada rotação do planeta. Isto causa o aquecimento das camadas mais altas da atmosfera bem como a emissão irregular de radiação eletromagnética no comprimento de onda do rádio.[9][46]

De fato a magnetosfera de Netuno possui a menor densidade de prótons e elétrons em comparação com os demais gigantes gasosos. A tênue atmosfera de Tritão, seu maior satélite natural, fornece íons de nitrogênio para a magnetosfera. Contudo, a constante desorientação da magnetosfera netuniana faz com que as partículas presas no mesmo passem pelos satélites e anéis do planeta, que acabam por absorvê-las. Fracas emissões de auroras foram detectadas em Netuno, possivelmente originadas próximas aos polos magnéticos.[9]