Número real
English: Real number

Wikitext.svg
Esta página ou seção precisa ser wikificada (desde março de 2019).
Por favor ajude a formatar esta página de acordo com as diretrizes estabelecidas.
Disambig grey.svg Nota: Para outros significados de Real, veja Real.
Question book-4.svg
Esta página ou secção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo, o que compromete a verificabilidade (desde Abril de 2014). Por favor, insira mais referências no texto. Material sem fontes poderá ser acadêmico)
Conjuntos de números


Naturais
Inteiros
Racionais
Reais
Imaginários
Complexos
Números hiper-reais
Números hipercomplexos

Quaterniões
Octoniões
Sedeniões
Complexos hiperbólicos
Quaterniões hiperbólicos
Bicomplexos
Biquaterniões
Coquaterniões
Tessarines

Conjuntos Numéricos.

O conjunto dos números reais é uma expansão do conjunto dos números racionais que engloba não só os inteiros e os fracionários, positivos e negativos, mas também todos os números irracionais.[1][2]

Os números reais são números usados para representar uma quantidade contínua (incluindo o zero, os positivos e os negativos). Pode-se pensar num número real como uma fração decimal possivelmente infinita, como 3,141592(...). Os números reais têm uma correspondência biunívoca com os pontos de uma reta.

Um Número Real é um valor que representa uma quantidade ao longo de uma linha contínua, incluindo tanto os Números Racionais quanto os Números Irracionais. Os números reais são pontos sobre uma linha reta infinita, chamada de Reta Numérica ou Reta Real, onde os pontos correspondentes aos Números Inteiros são igualmente espaçados.

Os números reais são incontáveis, isto é, enquanto que o conjunto de todos os Números Naturais e o conjunto de todos os Números Reais são conjuntos infinitos, não é possível haver função de um-pra-um entre eles. A cardinalidade do conjunto de todos os Números Reais é infinitamente maior do que a cardinalidade do conjunto de todos os Números Naturais.

Denomina-se corpo dos números reais a coleção dos elementos pertencentes à conclusão dos racionais,[3] formado pelo corpo de frações associado aos inteiros números racionais , a coleção de elementos dos números irracionais e a norma associada ao infinito.

Existem também outras conclusões dos racionais, uma para cada número primo p, chamadas números p-ádicos. O corpo dos números p-ádicos é formado pelos racionais e a norma associada.

Localização Geométrica dos pontos da reta

Um eixo cartesiano é uma reta euclidiana na qual foram escolhidas uma orientação e uma unidade de medida, ou seja, é formado por uma reta euclidiana , e pela escolha de dois pontos distintos sobre ela, denotados por e , sendo a origem do eixo e o ponto unitário do eixo. O ponto serve para determinar uma unidade de medida para os segmentos de reta do eixo, e também determina um sentido de percurso para o segmento. O sentido de percurso do eixo que vai de para () é chamado de sentido positivo, enquanto que o sentido oposto (), é chamado de sentido negativo. Observação: Denotando por o eixo determinado pela reta , pela origem e pelo ponto unitário , fia subentendido que isto determina como unidade de medida.